cos&sp2;α=(1+cos2α)/2

三角函数的降幂公式是什么

cos2α=(1+cos2α)/2

sin2α=(1-cos2α)/2

tan2α=(1-cos2α)/(1+cos2α)

运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

∴cos2α=(1+cos2α)/2

sin2α=(1-cos2α)/2

降幂公式,就是*指数幂由2次变为1次的公式,可以减轻二次方的麻烦。

锐角三角函数公式

sinα=∠α的对边/斜边

cosα=∠α的邻边/斜边

tanα=∠α的对边/∠α的邻边

cotα=∠α的邻边/∠α的对边

倍角公式

Sin2A=2SinA.CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2是sinA的平方sin2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

三倍角公式推导

sin3a=sin(2a+a)=sin2acosa+cos2asina

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

两角推诱导例

sin(π+x)=sinπcosx+sinxcosπ=-sinx

cos(π+x)=cosπcosx-sinπsinx=-cosx

sin(π-x)=sinπcosx-sinxcosπ=sinx

cos(π-x)=cosπcosx+sinπsinx=-cosx