-1
cos即余弦(余弦函数),三角函数的一种;角A的邻边比斜边叫做∠A的余弦,记作cos∠A。
余弦函数的定义域是整个实数集,值域是(-1,1)。它是周期函数,其*正周期为2π。在自变量为2kπ(k为整数)时,该函数有*值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
三角函数的定义
1.设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)则P与原点的距离。
2.突出探究的几个问题:
①角是“任意角”,当b=2kp+a(k?Z)时,b与a的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等;
②实际上,如果终边在坐标轴上,上述定义同样适用;
③三角函数是以“比值”为函数值的函数;
④而x,y的正负是随象限的变化而不同,故三角函数的符号应由象限确定。
⑤定义域
注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合。
(2)OP是角的终边,至于是转了几圈,按什么方向旋转的不清楚,也只有这样,才能说明角是任意的。
(3)比值只与角的大小有关。
3.三角函数在各象限内的符号规律:*象限全为正,二正三切四余弦。
两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)