扇形弧长公式:弧长=(n*π*r)/180;扇形面积公式:S扇=LR/2

扇形弧长公式是

弧长=(n*π*r)/180

一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形),它是由圆周的一部分与它所对应的圆心角围成。

弧长=半径×圆心角弧度数(请*要注意这里是使用的弧度制不是圆心角,角度数)

扇形面积公式

S扇=LR/2(L为扇形弧长,R为半径)或π(R^2)*N/360(即扇形的度数)

扇形是与圆形有关的一种重要图形,其面积与圆心角(顶角)、圆半径相关,圆心角为n°,半径为r的扇形面积为n/360*πr^2。如果其顶角采用弧度单位,则可简化为1/2×弧长×(半径)

扇形还与三角形有相似之处,上述简化的面积公式亦可看成:1/2×弧长×(半径),与三角形面积:1/2×底×高相似。

扇形的弧长第二公式为

扇形的弧长,事实上就是圆的其中一段边长,扇形的角度是360度的几分之一,那么扇形的弧长就是这个圆的周长的几分之一,所以我们可以得出:

扇形的弧长=2πr×角度/360

其中,2πr是圆的周长,角度为该扇形的角度值。

补充

扇形弧长和面积公式

弧长=(n*π*r)/180。面积=(n*π*r^2)/360=l*r/2。

一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

显然,它是由圆周的一部分与它所对应的圆心角围成。《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。

扇形(符号:?),是圆的一部分,由两个半径和和一段弧围成,在较小的区域被称为小扇形,较大的区域被称为大扇形。在右图中,θ是扇形的角弧度,r是圆的半径,L是小扇形的弧长。

圆弧为180°的扇形称为半圆。其他圆弧角的扇形有时给予其特别的名字,其中包括象限角(90°)、六分角(60°)以及八分角(45°),它们分别是整圆的1/4、1/6、1/8。

组成部分

1、圆上A、B两点之间的的部分叫做“圆弧”简称“弧”,读作“圆弧AB”或“弧AB”。

2、以圆心为中心点的角叫做“圆心角”。

3、有一种统计图就是“扇形统计图"。