向量共线也叫共线向量或者平行向量,意思是其平行向量可移到同一直线上。共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在*实数λ,使得b=λa。向量共线有三个性质:
一、*性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线;
二、必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0;
三、*性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。