1:√3:2

30度的直角三角形三边关系为1:√3:2。30度的直角三角形是一个特殊的直角三角形,其三个角的分别为30度、60度和90度,根据三角形的正弦定理可以知道,三角形角的对应正弦函数值等于对应边的比,即sin30:sin60:sin90。

直角三角形

若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

正弦定理中的三边关系计算

在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:a/sinA=b/sinB=c/sinC=2R,一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。

直角三角形判定方法

判定1:有一个角为90°的三角形是直角三角形。

判定2:若a2+b2+c2,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么这个三角形为直角三角形。

判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。参考直角三角形斜边中线定理。

判定7:一个三角形30°角所对的边等于某一邻边的一半,则这个三角形为直角三角形。