log(a)(MN)=log(a)(M)+log(a)(N)

当a>0且a≠1时,M>0,N>0,那么

(1)log(a)(MN)=log(a)(M)+log(a)(N);

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M)(n∈R)

(4)换底公式:log(A)M=log(b)M/log(b)A(b>0且b≠1)

(5)a^(log(b)n)=n^(log(b)a)证明:

设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)

(6)对数恒等式:a^log(a)N=N;

log(a)a^b=b

(7)由幂的对数的运算性质可得(推导公式)

1.log(a)M^(1/n)=(1/n)log(a)M,log(a)M^(-1/n)=(-1/n)log(a)M

2.log(a)M^(m/n)=(m/n)log(a)M,log(a)M^(-m/n)=(-m/n)log(a)M

3.log(a^n)M^n=log(a)M,log(a^n)M^m=(m/n)log(a)M

4.log(以n次根号下的a为底)(以n次根号下的M为真数)=log(a)M,

log(以n次根号下的a为底)(以m次根号下的M为真数)=(m/n)log(a)M

5.log(a)b×log(b)c×log(c)a=1

对数与指数之间的关系:当a>0且a≠1时,a^x=Nx=㏒(a)N

补充

两句经典话:底真同对数正,底真异对数负。

解释如下

也就是说:若y=logab(其中a>0,a≠1,b>0)

当00;

当a>1,b>1时,y=logab>0;

当01时,y=logab<0;

当a>1,0