正三角形有3条对称轴
等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或角的平分线所在的直线。轴对称的判定是如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
如果两个图形关于某条直线对称,那么对称轴是*一对对应点所连线段的垂直平分线。类似地,轴对称图形的对称轴,是*一对对应点所连线段的垂直平分线。线段的垂直平分线上的点与这条线段的两个端点的距离相等。对称轴是到线段两端距离相等的点的*。
三角形基本简介
在同一平面内,由不在同一条直线的三条线段首尾相接所得的封闭图形。
三角形三个内角的和等于180度。
三角形*两边的和大于第三边。
三角形任意两边之差小于第三边。
三角形的外角等于与它不相邻的两个内角的和。
三角形的判定方法
判定法一
1、锐角三角形:三角形的三个内角都小于90度。
2、直角三角形:三角形的三个内角中一个角等于90度。
3、钝角三角形:三角形的三个内角中有一个角大于90度。
判定法二
1、锐角三角形:三角形的三个内角中*角小于90度。
2、直角三角形:三角形的三个内角中*角等于90度。
3、钝角三角形:三角形的三个内角中*角大于90度,小于180度。
轴对称简介
1、轴对称图形,数学术语,定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够*重合的图形;
2、直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。
定理
1、关于某条直线对称的两个图形是全等形;
2、如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
3、两个图形关于某条直线对称,如果对称轴和某两条对称线