导数,也叫导函数值。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来分享常用导数公式,供参考。

三角函数的导数公式

正弦函数:(sinx)'=cosx

余弦函数:(cosx)'=-sinx

正切函数:(tanx)'=sec2x

余切函数:(cotx)'=-csc2x

正割函数:(secx)'=tanx·secx

余割函数:(cscx)'=-cotx·cscx

反三角函数的导数公式

反正弦函数:(arcsinx)'=1/√(1-x^2)

反余弦函数:(arccosx)'=-1/√(1-x^2)

反正切函数:(arctanx)'=1/(1+x^2)

反余切函数:(arccotx)'=-1/(1+x^2)

其他函数导数公式

常函数:y=c(c为常数) y'=0

幂函数:y=xn y'=nx^(n-1)

指数函数:①y=ax y'=axlna ②y=ex y'=ex

对数函数:①y=logax y'=1/xlna ②y=lnx y'=1/x