一个
七大数学难题解决了一个,七个“*难题”是:NP*问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳卫尔-斯托可方程、BSD猜想。数学中的重大问题通常不总会像其他科学领域的谜团一样能引起外界的兴趣。“对于数学研究是什么样子或它的意义是什么,许多人仍然困惑不已。”密歇根大学的数学家WeiHo说。尽管人们经常误解她工作的性质,但Ho说这解释起来可能并不难。“我在聚会上的闲聊话题总是关于椭圆曲线。”她补充道。Ho经常问参加聚会的人:“你记得中学学过的抛物线和圆吗?一旦你开始创建三次方程,事情就会变得非常困难......关于它们有很多悬而未决的问题。”
一个名为贝赫和斯维讷通-戴尔猜想(BirchandSwinnerton-Dyerconjectre)的*未解之谜涉及椭圆曲线方程解的性质,它是克雷数学研究所(ClayMathematicsInstitte,CMI)创始科学顾问委员会选定的七个千禧年大奖难题之一,这些选出的问题被该研究所描述为“数学家在千年之交正在努力解决的问题中最难的一批”。
2000年5月24日,在巴黎举行的一次特别活动中,该研究所宣布为首个证明或推翻任意一个难题的人提供100万美元的奖励。
2018年修订的规则规定,结果必须被“*数学界普遍接受”。
2000年的公告为人们提供了一个价值700万美元的“理由”来解决这七个问题:黎曼猜想、贝赫和斯维讷通-戴尔猜想、P/NP问题、杨-米尔斯存在性和质量间隙、庞加莱猜想、纳维-斯托克斯存在性与光滑性,以及霍奇猜想。尽管声势浩大,还有*奖励,但21年后只有庞加莱猜想得到了证明。
七大数学难题
1、NP*问题
有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班*步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题,这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。人们发现,所有的*多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题存在一个确定性算法,可以在多项式时间内直接算出或是搜寻出正确的答案呢?这就是*的NP=P?的猜想。
2、霍奇猜想
霍奇猜想是代数几何的一个重大的悬而未决的问题。它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想。用通俗的话说,就是“再好再复杂的一座宫殿,都可以由一堆积木垒成”。用文人的话说就是:*一个形状的几何图形,不管它有多复杂,它都可以用一堆简单的几何图形拼成。在实际工作中,我们无法在二维平面的纸上绘画出来一种复杂的多维图形,霍奇猜想就是把复杂的拓扑图形分拆成为一个个构件,我们只要按照规则安装就可以理解设计者的思想。
3、庞加莱猜想
庞加莱猜想是法国数学家庞加莱提出的一个猜想,即“*一个单连通的,闭的三维流形*同胚于一个三维的球面。”简单的说,一个闭的三维流形就是一个有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就*是一个三维圆球。庞加莱猜想是一个拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对流形性质的认识。
4、黎曼假设
黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。有些数具有不能表示为两个更小的整数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循*有规则的模式。*的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线z=1/2+ib上,其中b为实数,这条直线通常称为临界线。这点已经对于开始的1500000000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
5、杨-米尔斯存在性和质量缺口
大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。该问题的正式表述是:证明对*紧的、单的规范群,四维欧几里得空间中的杨米尔斯方程组有一个预言存在质量缺口的解。该问题的解决将阐明物理学家尚未*理解的自然界的基本方面。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
6、纳卫尔-斯托可方程
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然*。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
7、BSD猜想
BSD猜想,全称贝赫和斯维纳通-戴尔猜想,它描述了阿贝尔簇的算术性质与解析性质之间的联系。给定一个整体域上的阿贝尔簇,猜想它的莫代尔群的秩等于它的L函数在1处的零点阶数,且它的L函数在1处的泰勒展开的首项系数与莫代尔群的有限部分大小、自由部分体积、所有素位的周期以及沙群有*的等式关系。