一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为y=f-1(x)。例题:求函数3x-2的反函数:y=3x-2的定义域为R,值域为R。由y=3x-2解得:x=1/3(y+2) ,将x、y互换,则所求y=3x-2的反函数是y=1/3(x+2)。
扩展资料
反函数的性质:
(1)函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不*存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一段连续的函数的单调性在对应区间内具有一致性;
(6)严增(减)的函数*有严格增(减)的反函数;