约等于2.718的无理数
e有时被称为自然常数,是一个约等于2.718的无理数。以e为底的对数称为自然对数,数学中使用自然这个词的还有自然数。这里的“自然”并不是现代人所习惯的“大自然”,而是有点儿“天然存在,非人为”的意思。
自然对数e的来历
e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:当n->∞时,(1+1/n)^n的*。注:x^y表示x的y次方。随着n的增大,底数越来越接近1,而指数趋向*大,那结果到底是趋向于1还是*大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。
我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至*一次;当然计息周期愈短,本利和就会愈高。
有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一*值,而e这个数就现身在该*值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个*值,但是在那时候,根本还没有*的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。
自然常数e在科学上有广泛应用,以下举几例
1、e对于自然数的特殊意义
所有大于2的2n形式的偶数存在以e为中心的共轭奇数组,每一组的和均为2n,而且至少存在一组是共轭素数。可以说是素数的中心轴,只是奇数的中心轴。
2、素数定理
自然常数也和质数分布有关。有某个自然数a,则比它小的质数就大约有个。在a较小时,结果不太正确。但是随着a的增大,这个定理会越来越*。这个定理叫素数定理,由高斯发现。