3/5

sin(函数名称)一般指正弦,数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。古代说法,正弦是股与弦的比例。

三角函数

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的*与一个比值的*的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不*。现代数学把它们描述成*数列的*和微分方程的解,将其定义扩展到复数系。

由于三角函数的周期性,它并不具有单值函数意义上的反函数。

三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A的正切,记作tanA

即tanA=角A的对边/角A的邻边

同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA

即sinA=角A的对边/角A的斜边

同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA

即cosA=角A的邻边/角A的斜边

关于sin和cos的几个转换公式

公式一

设α为任意角,终边相同的角的同一三角函数的值相等

k是整数sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

sec(2kπ+α)=secα

csc(2kπ+α)=cscα

公式二

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sec(π+α)=-secα

csc(π+α)=-cscα

公式三

任意角α与-α的三角函数值之间的关系sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

sec(-α)=secα

csc(-α)=-cscα